Authentication Service

- Kerberos allow users and services to authenticate themselves to each other
- Kerberos was created at MIT in the early 1980s
- Based on the Needham-Schroeder authentication protocol
- Internet Engineering Task Force RFC 1510
- Used by Microsoft Windows
Encryption for Authentication

- Kerberos bases its authentication on a principle’s ability to decrypt a known value.
- If I send you an encrypted value and you send it back to me unencrypted, then I know that you have the decryption key.
Symmetric Key Encryption

- Kerberos uses secret key encryption.
- DES is the default encryption algorithm, although other algorithms can be used.
User Passwords

• User passwords are hashed
• The hash is used as an encryption key.
• The password itself is never transmitted over the network.
Kerberos Servers

• Authentication Servers (AS)
 – Verify a client’s identity
 – Provides a ticket to the TGS

• Ticket Granting Servers (TGS)
 – Provides tickets for application servers
 – Knows an encryption key for each server

• Both servers may be in the same machine
Tickets

• Kerberos passes tickets to verify identity
• Tickets contain a timestamp to avoid future replay.
• Tickets contain a principles name and a key for future communication.
• Tickets are encrypted with the key of the server.

\[\{ \text{name, Key}_{C\rightarrow S} \} \text{Key}_{S\rightarrow TGS} \]
Overview of Kerberos

AS – Authentication Service
TGS – Ticket Granting Service

Client

Server
Authentication Server Exchange

• Client to AS
 – UserID, TGSname, nonce

• AS to Client
 – Ticket_{C→TGS}, TGT_C
 – Ticket_{C→TGS} =\{U,C,TGS,Key_{C→TGS}\}Key_{AS→TGS}
 – TGT_C = \{TGS,Key_{C→TGS},nonce\}Key_U
TGS Exchange

- **Client to TGS**
 - S, nonce2, Ticket_{C \rightarrow TGS}

- **TGS to Client**
 - U, Ticket_{C \rightarrow S}, Ticket_{C}
 - Ticket_{C \rightarrow S} = \{U, C, S, Key_{C \rightarrow S}\}Key_{S \rightarrow TGS}
 - Ticket_{C} = \{S, Key_{C \rightarrow S}, nonce2\}Key_{C \rightarrow TGS}
Application Server Exchange

- Client to Application Server
 - $\text{Ticket}_{C \rightarrow S}, \{C,\text{time1}\} \text{ Key}_{C \rightarrow S}$

- Application Server to Client
 - $\{\text{time1}\} \text{ Key}_{C \rightarrow S}$
Triple DES

• Because many people feel that the 56 bit key of DES is too small, Triple DES is frequently used for additional security.

• Triple DES uses two 56 bit keys (112 bits) and executes DES three times.

• \(\text{cipher} = E_{\text{key}_1}(D_{\text{key}_2}(E_{\text{key}_1}(\text{plaintext}))) \)