COMP476
Networked Computer Systems

Client/Server Programming
Establishing Contact through IP

- *Listening* application informs local protocol software that it is ready to accept incoming messages
- *Connecting* application uses internet protocol to contact listener
- Applications exchange messages through resulting connection
Client-Server Paradigm

- **Server** application is “listener”
 - Waits for incoming message
 - Performs service
 - Returns results
- **Client** application establishes connection
 - Sends message to server
 - Waits for return message
Characteristics of Client

• Arbitrary application program
 • Becomes client when network service is needed
 • Also performs other computations
• Invoked directly by user
• Runs locally on user's computer
• Initiates contact with server
• Must know (or find) the address of server
 Can access multiple services
Characteristics of Server

• Special purpose application dedicated to providing network service
• Starts at system initialization time
• Runs on a remote computer (usually centralized, shared computer)
• Waits for service requests from clients; loops to wait for next request
• Will accept requests from arbitrary clients; provides one service to each client
Message Exchanges

• Typically, client and server exchange messages:
 • Client sends request, perhaps with data
 • Server sends response, perhaps with data
• Client may send multiple requests; server sends multiple responses
• Server may send multiple response - consider streaming audio
Transport Protocols and Client-Server Paradigm

- Clients and servers exchange messages through transport protocols; e.g., TCP or UDP
- Both client and server must have same protocol stack and both interact with transport
Multiple Services on One Computer

- Servers run as independent processes and can manage clients simultaneously
Multiple Services on One Computer

• Can reduce costs by sharing resources among multiple services
• Reduces management overhead - only one computer to maintain
• One server can affect others by exhausting computer resources
• Failure of single computer can bring down multiple servers
Selecting from Multiple Servers

• How do incoming messages get delivered to the correct server?

• Each transport session has two unique identifiers
 • (IP address, port number) on server
 • (IP address, port number) on client

• No two clients on one computer can use same source port

• Thus, client endpoints are unique, and server computer protocol software can deliver messages to correct server process
Binding of Server Location

• How and when does a client application learn the location of a service?

• Goals:
 – portability - allow the application to be used on different systems
 – load balancing - select server with lowest utilization
 – failure recovery - select a different server if original fails
 – efficiency – avoid many messages or broadcasts
Finding a Service

- Write server name in code
- Read a file of server addresses
- Broadcast request for a server
- Ask a human
- Name server
- UDDI

- Much more on this topic later on
Client-Server Interactions

- Clients can access multiple services
- Clients may access different servers for one service
- Servers may become clients of other servers
Summary

- Client-server paradigm used in almost every distributed computation
 - Client requests service when needed
 - Server waits for client requests
- Clients and servers use transport protocols to communicate
- Often, but not always, there is an application protocol