Secure OS

Standard OS Security

Your regular laptop OS provides several security features
- File access permissions
- Separate accounts with passwords
 - Separate home directory
 - Lesser privileged accounts
- Ability to encrypt files transparently

Windows File Encryption

- Windows can encrypt the contents of a file
- Encryption and decryption happens automatically without input from the user
- Access to the encryption keys is based on the user’s password

Windows Encryption Recovery

- If an administrator changes a user’s password, they will lose access to encrypted files
- Windows supports Recovery Certificates that can allow access if the user previously allowed this
Hardware Disk Encryption

Commercial Products

Windows Security Center

User Account Control

- User Account Control (UAC) asks permission or an admin password before performing actions that could potentially affect your system
 - Windows needs your permission to continue
 - Program needs your permission to continue
 - Unidentified program wants access
 - This program has been blocked
- Many users consider UAC to be annoying
Pentium Protection

- Protection bits give 4 levels of privilege
 - 0 most protected, 3 least
 - Use of levels software dependent
 - Usually level 3 for applications, level 1 for O/S and level 0 for kernel (level 2 not used)
 - Level 2 may be used for apps that have internal security e.g. database
 - Some instructions only work in level 0

Memory Separation

- All memory allocation schemes we discussed prevent one user from accessing the memory of another
- Base address registers have limit registers
- Each user has their own page table in a virtual memory system. Users cannot address the memory of another user.

Security Oriented OS

- There are several operating systems whose focus is enhanced security
- Some OS are designed to enforce mandatory access control policies
- Security-Enhanced Linux (SELinux) is a set of modifications to regular Linux to support access control security policies including mandatory access control
Bell-LaPadula Model

- The Bell-LaPadula Model is a state machine model used for enforcing access control in government and military applications
- Developed by David Elliott Bell and Leonard J. La Padula in 1973
- Basis for the TCSEC and other secure systems

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Both people and objects have a security level
 - People or subjects have a clearance level, $L(s)$
 - Objects have security classification, $L(o)$

Marking

- All objects (such as files) in a secure operating system are marked with a security level
- An object’s security level is set when the object is created and cannot be changed
- The OS is responsible for maintaining an object’s security level
- When a user’s account is entered in the system, the administrator sets their security level

Reading Information

- Information flows up, not down
 - “Reads up” disallowed, “reads down” allowed
- Read rule (Step 1)
 - Subject s can read object o if $L(o) \leq L(s)$ and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 – “Writes up” allowed, “writes down” disallowed
• Writing rule (Step 1)
 – Subject s can write object o iff $L(o) \geq L(s)$ and s has permission to write o
 – Sometimes called “no writes down” rule

Example

<table>
<thead>
<tr>
<th>L</th>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Top Secret</td>
<td>Tanya</td>
<td>Personnel Files</td>
</tr>
<tr>
<td>3</td>
<td>Secret</td>
<td>Sam</td>
<td>E-Mail Files</td>
</tr>
<tr>
<td>2</td>
<td>Confidential</td>
<td>Claire</td>
<td>Activity Logs</td>
</tr>
<tr>
<td>1</td>
<td>Unclassified</td>
<td>Umoja</td>
<td>Telephone Lists</td>
</tr>
</tbody>
</table>

• Tanya can read all files
• Claire cannot read Personnel or E-Mail Files
• Umoja can only read Telephone Lists

Basic Security Theorem, Step 1

• If a system is initially in a secure state, and every action of the system satisfies the read and write rules, then every state of the system is secure
• If all rules are followed, the system is provably secure

Bell-LaPadula Model, Step 2

• Expand notion of security level to include categories
• Security level is \((clearance, category\ set)\)
• Examples
 – \((Top\ Secret, \{NUC, EUR, ASI\})\)
 – \((Confidential, \{EUR, ASI\})\)
 – \((Secret, \{NUC, ASI\})\)
Dominating

- The *dom* relation ("Dominates") specifies that the levels are greater or equal and the categories includes all items in the dominated categories.
- $(L(a), C) \ dom (L(b), C')$ iff $L(a) \geq L(b)$ and $C' \subseteq C$
- Not a symmetric or asymmetric relation
- Examples
 - $(\text{Top Secret}, \{\text{NUC, ASI}\}) \ dom (\text{Secret}, \{\text{NUC}\})$
 - $(\text{Secret}, \{\text{NUC, EUR}\}) \ dom (\text{Confidential}, \{\text{NUC, EUR}\})$
 - $(\text{Top Secret}, \{\text{NUC}\}) \n\text{om} (\text{Confidential}, \{\text{EUR}\})$
 - $(\text{Confidential}, \{\text{EUR}\}) \ dom (\text{Top Secret}, \{\text{NUC}\})$

Levels and Ordering

- Security levels partially ordered
 - Any pair of security levels may (or may not) be related by *dom*
- "dominates" serves the role of "greater than" in step 1
 - "greater than" is a total ordering, though

Reading Information

- Information flows *up*, not *down*
 - "Reads up" disallowed, "reads down" allowed
- Read rule (Step 2)
 - Subject s can read object o iff $L(s) \ dom L(o)$ and s has permission to read o
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- Write rule (Step 2)
 - Subject s can write object o iff $L(o) \ dom L(s)$ and s has permission to write o
 - Sometimes called "no writes down" rule
Examples

- If Cindy has Top Secret clearance with categories {bombs, encryption} she can read, but not write, a file marked (Secret, {encryption})
- If David has Secret clearance with categories {bombs, encryption} he can read or write a file marked (Secret, {encryption})
- If Amanda has Top Secret clearance with categories {bombs, encryption} she can neither read nor write a file marked (Secret, {covert})

Trusted Computer System Evaluation Criteria

- Trusted Computer System Evaluation Criteria (TCSEC) is a Department of Defense standard that sets basic requirements for assessing the effectiveness of computer security controls
- Created in 1983 and replaced by the international Common Criteria standard in 2005

Orange Book

- The TCSEC standard is informally known as the Orange book
- One of the Rainbow Series of U.S. government security publications

TCSEC Policy Objectives

- The security policy must be explicit, well-defined and enforced by the computer system
- Mandatory Access Control – The Bell-LaPadula Model must be enforced
- Discretionary Security Policy – Allow users to specify who may access an object and how
TCSEC Accountability Requirements

Regardless of policy the system must enforce
- **Identification** - The ability to recognize an individual user
- **Authentication** - The verification of an individual user's authorization to specific information
- **Auditing** - Audit information must be kept and protected so that actions affecting security can be traced to the individual

TCSEC Assurance

- The computer system must contain hardware/software mechanisms that can be independently evaluated to provide sufficient assurance that the system enforces the above requirements

TCSEC Classes

- **A** — Verified protection
 - A1 — Verified Design
- **B** — Mandatory protection
 - B1 — Labeled Security Protection
 - B2 — Structured Protection
 - B3 — Security Domains
- **C** — Discretionary protection
 - C1 — Discretionary Security Protection
 - C2 — Controlled Access Protection
- **D** — Minimal protection

Common Criteria

- Common Criteria for Information Technology Security Evaluation is an international standard for computer security certification
- Evolved from previous U.S., Canadian and European standards
Evaluation Assurance Level

- The Evaluation Assurance Level (EAL) is a numerical rating describing the depth and rigor of an evaluation
- EAL 1 is the most basic and EAL 7 the most stringent
- Higher EALs do not necessarily imply “better security”, only more extensively verified

Common Criteria Testing Laboratories

- Common Criteria Testing Laboratories (CCTL) certify that a product meets specifications
- In the US, the National Institute of Standards and Technology (NIST) and the National Voluntary Laboratory Accreditation Program accredits Laboratories

Why have International Standards?

- If a device has been certified to meet the standard, people building secure systems can feel safe to use it
- Without standards, people can make claims about their security without any basis for accuracy

Criticisms of Common Criteria

- Evaluation is a costly process (often measured in hundreds of thousands of US dollars)
- Evaluation focuses primarily on assessing the documentation, not on the product itself
- It takes so long to prepare the evidence and get certified that the product may be obsolete