
Scheduling

COMP755 Advanced OS 1

Scheduling

COMP450 Operating Systems

Goals of Scheduling
• User Oriented

– minimize response time (interactive)
– minimize Turnaround time (batch jobs)
– Meet deadlines

• System Oriented
– Predictable
– maximize Throughput
– Processor Utilization
– Fair
– Enforce priorities
– Balance resources
– Balance user groups

Levels of Scheduling

• Long Term scheduling
• Medium Term scheduling
• Short Term scheduling
• I/O scheduling

Long-term scheduling

• Only relevant for systems that have a
backlog of batch jobs to run

• Deals with creating a new process
• Controls the degree of multiprogramming
• Interactive systems tend to accept users

unless the system is swamped
• The more processes, the smaller

percentage of time each process is
executed

This is all we are going to say about long-term scheduling

Medium-term scheduling
• The decision to add to the number of

processes that are partially or fully in main
memory

• Deals with swapping processes in and out
• A swapped out process cannot be executed

until it is swapped back into RAM

Medium-term scheduling will be discussed when we talk about
memory management.

Short-Term Scheduling
• Determines which process is going to execute

next
• The short term scheduler is known as the

dispatcher
• Is invoked on an event that may lead to choosing

another process for execution:
– clock interrupts
– I/O interrupts
– operating system calls and traps
– signals

Short Term Scheduling is the subject of this chapter

Scheduling

COMP755 Advanced OS 2

Classification of Scheduling Activity

• Long-term: which process to admit
• Medium-term: which process to swap in or out
• Short-term: which ready process to execute next

Types of Dispatch Algorithms

• Non-preemptive
– Once the thread is started, it continues to

run until it voluntarily gives up control.
– May cause one thread to monopolize the

system.
– Useful for real-time systems

• Preemptive
– The dispatcher may select another thread

to run after a while.
– Most systems are preemptive.

Dispatcher Algorithms

• FCFS
• Round robin
• Feedback queues
• Priority
• Shortest Job First
• Shortest Process Next (shortest estimated

CPU burst)

• Real time scheduling

Common Elements
• Each algorithm selects a thread from the

ready list and runs it.
• None of the scheduling algorithms will

allow the processor to be idle if there is a
thread to run.

• The CPU can execute in parallel with I/O.
• When a program is waiting for I/O to

complete, another thread can run.
• If there is only one thread on the ready list,

it doesn’t matter what algorithm you use.

Scheduling Algorithm
Evaluation

• Average time to completion
– minimize

• Average total wait time
– minimize

• CPU utilization
– maximize

Priority Scheduling

• Scheduler will always choose a process of
higher priority over one of lower priority

• Have multiple ready queues to represent
each level of priority

• May be preemptive or non-preemptive
• Lower-priority may suffer starvation

– allow a process to change its priority based
on its age or execution history

Scheduling

COMP755 Advanced OS 3

First-Come-First-Served (FCFS)

• The FCFS algorithm runs the oldest thread
until it blocks and then runs the next oldest
thread until it blocks etc.

• This is usually a non-preemptive algorithm.

Round-Robin

• Clock interrupts are generated at periodic
intervals

• When a clock interrupt occurs, the
currently running process is placed in the
read queue. The next ready job is
selected

• Known as time slicing

Shortest Job First
• This algorithm selects the thread that has

the least amount of processing required to
run to completion.

• This is the optimal algorithm. It provides
the minimum average wait time.

• Since we can’t look into the future, we
don’t easily know which thread has the
least amount of time left to finish.

• Impossible to implement.

Shortest Process Next

• An attempt to implement the shortest job
first algorithm.

• The thread that is likely to use the least
amount of CPU time is selected.

• The amount of CPU time a thread is likely
to use until it is blocked is computed by a
time weighted average of the length of its
last several CPU bursts.

Feedback Queues
• The dispatcher maintains several queues,

often a short, medium and long queue.
• Threads in the short queue are executed

for a short time quantum. Threads in the
medium and long queue are executed for
successively longer time quantums.

• New threads enter in the short queue.
• When a thread moves from the blocked

state to the ready state, it enters the short
queue.

Scheduling

COMP755 Advanced OS 4

Feedback Queues

• The dispatcher runs threads in the short
queue in the FCFS order. As long as
there are threads in the short queue, they
are executed.

• If a thread from the short queue uses all of
its time quantum without relinquishing the
CPU, it is moved to the medium queue.

Feedback Queues

• Threads in the medium queue are
executed only when the short queue is
empty.

• Threads in the long queue are executed
only when the short and medium queues
are empty.

Feedback Queue Feedback Analysis

• Threads that do lots of I/O and very little
processing will be in the short queue.
They will get the CPU ahead of CPU
bound threads.

• Threads using the CPU for longer periods
will run for longer time quantums to reduce
the number of context switches.

• CPU bound threads run only when there
are no other threads to run.

Fair Share Scheduling
• Imagine your program and my program

are competing for the CPU.
• If each program has one thread, then a fair

scheduling algorithm will give each thread
50% of the available time.

• Assume my program creates two more
threads for a total of three. If each thread
gets an equal share of the CPU, my
program gets 75% of the CPU.

Prioritized, Shortest Process
Next, Multilevel Feedback

Queue Algorithm
• The best of the described algorithms can

be combined to create a scheduling
algorithm sure to please everyone.

A Dr. Williams original.

Scheduling

COMP755 Advanced OS 5

PSPNMFQ Algorithm
• Each thread is assigned a priority number.
• When a thread uses its time quantum, the

priority number is lowered.
• When a thread is blocked, its priority

number is raised.
• If a thread hasn’t been executed for a while,

its priority number is increased.
• The highest priority numbered thread is

selected.
• Time quantum length is inversely

proportional to priority.

Example Programs
• Assume no overlap of I/O and processing.
• All I/O requests take 3 units of time.
A starts at 0 priority low
2 I/O 10 I/O 1 I/O 1
B starts at 1 priority medium
1 I/O 1 I/O 1 I/O 1 I/O 1 I/O 1 I/O 1 I/O 1
C starts at 2 priority high
4 I/O 1 I/O 4 I/O 1 I/O 4 I/O 1
D starts at 3 priority medium
2 I/O 1 I/O 6 I/O 1 I/O 4 I/O 1

FCFS

DDDDDDXXXDXXXDD

XXXCCCCXXXCXXXCCCC

XXXBXXXBXXXB

XXXAXXXAAAAAAAAAAXXXAA

DXXXDDDDXXXDXXX

CXXXCCCCXXXC

BXXXBXXXBXXXBXXXB

A

A 2 I/O 10 I/O 1 I/O 1 B 1 I/O 1 I/O 1 I/O 1 I/O 1 I/O 1 I/O 1 I/O 1

C 4 I/O 1 I/O 4 I/O 1 I/O 4 I/O 1 D 2 I/O 1 I/O 6 I/O 1 I/O 4 I/O 1

Round Robin

DDDDDXXXDXXXDD

CCCCXXXCXXXCCCC

BXXXBXXXBXXXBXXXBXXXBXXXBXXXB

AAAAAAAXXXAA

DXXXDDDDXXXDXXXD

CXXXCCCCXXXCXXX

AXXXAXXXAAA

A 2 I/O 10 I/O 1 I/O 1 B 1 I/O 1 I/O 1 I/O 1 I/O 1 I/O 1 I/O 1 I/O 1

C 4 I/O 1 I/O 4 I/O 1 I/O 4 I/O 1 D 2 I/O 1 I/O 6 I/O 1 I/O 4 I/O 1

Evaluation
• Average time to completion

– FCFS= 35 + 57 + 50 + 52 = 48.5
– RR= 49 + 30 + 54 + 55 = 47

• Processor Utilization
– FCFS = 52/57 = 91.2%
– RR = 52/55 = 94.5

• Context Switches
– FCFS = 27
– RR = 53

Multiprocessors

• There are many different types of
computers with multiple processors. The
most common system in use today is the
Symmetric MultiProcessor (SMP).

• All of the CPUs in an SMP system are
identical and can address all of the RAM

Scheduling

COMP755 Advanced OS 6

Multiprocessor Scheduling

• Very little has to be done to schedule a
multiprocessor system.

• Whenever a CPU needs a process to run,
it takes the next task from the ready list.

• The scheduling queue must be accessed
in a critical section. Busy waiting is
usually used.

Considerations for SMP scheduling

• With multiple CPUs, it is not as likely that a
short task will get stuck waiting for a long
task to complete. Therefore the selection
of the next task is not as important.

• Any task can run on any CPU thereby
allowing load balancing.

• Tasks should stay with a single CPU when
feasible to take advantage of cache
loading.

Real Time Programming

• Real-time computing requires that the
result not only be correct, but produced
within a specific time limit.

• Real-time programming is used in process
control to ensure that the system reacts to
an input in time.

• Examples are chemical plant control or
robotic control.

Real Time Scheduling
• Many real time systems run a known

collection of tasks. The execution time of
the tasks is frequently known ahead of time.

• Tasks have deadlines by which they must
complete.

• If a task that runs for 3 time units must be
done at time 10, it must start by time 7.

• If two tasks that runs for 3 time units each
must be done at time 10, one must start by
time 4.

Static R/T Scheduling

• Static predetermined schedules - A
schedule is devised before hand from a list
of known tasks, execution times and
deadline times.

• Static predetermined priorities - Using a
list of known tasks, execution times and
deadline times, priorities are assigned to
each task. A regular priority based
scheduler is used.

Dynamic R/T Scheduling

• Dynamic planning based - When a task
is scheduled, the algorithm determines if it
can be feasibly executed in time.

• Dynamic best effort - The scheduler tries
to meet deadlines by raising the priority of
tasks as they approach their deadline.
Tasks are aborted if they don't or can't
meet their deadline.

