
1

Deadlock

COMP755 Advanced Operating
Systems

Deadlock Definitions
• A deadlock occurs when two or more

tasks are waiting for each other and they
cannot proceed.

• Deadlock is a situation where two or more
processes are each waiting for a resource
that another process in the group holds.

• Deadlock is the permanent blocking of a
set of processes.

• Deadlock occurs when waiting processes
cannot be removed from the wait state.

Hung Systems

• Deadlock typically results in “hung”
systems. The program is running, but
nothing is happening.

• If there is a possible order of execution
that will allow all tasks to complete, then
the system is not deadlocked.

Deadlock Example

• Consider a program with two threads.
Each thread requires exclusive access to
the resources A and B.

Thread 1

Acquire resource A

Acquire resource B

Thread 2

Acquire resource B

Acquire resource A

Both threads are deadlocked.

Necessary Conditions for Deadlock

1. Mutual Exclusion
2. No Preemption
3. Hold and Wait
4. Circular wait

Mutual Exclusion

• Deadlock will only occur if a resource
cannot be simultaneously used by more
than one task.

• Some resources can easily be shared
– Read only files
– Code with no shared data

2

No Preemption

• A higher priority thread cannot “steal” a
resource from a lower priority thread.

• Some resources, such as the CPU, can be
easily preempted and given to another
thread. The dispatcher frequently
suspends a thread and runs another.

• If one thread can take resources from
another, then it can grab all it needs and
run to completion.

Hold and Wait

• A thread has to have a shared resource
allocated to it and be waiting for another
resource.

• If a thread gets all of its necessary
resources at once, then it will not
deadlock.

• A thread has to have one resource and be
waiting for more to deadlock.

Circular Wait

• The resource diagram has to have a cycle,
a path following the directed edges that
starts at one point and returns to the same
point.

• A deadlock can not occur unless the graph
of tasks and resources contains a cycle.

Circular Wait Graph
• Tasks are circles and resources are boxes

with one dot for each unit of resource.

Deadlock Cycle Necessary but Not Sufficient

• The four requirements for deadlock:
1. Mutual Exclusion
2. No Preemption
3. Hold and Wait
4. Circular wait

• These must be present for a deadlock to
occur, but their presence does not
necessarily mean there must be a
deadlock.

3

Non-Deadlock Cycle Necessary and Sufficient
Conditions for Deadlock

• 1 - 3 as before
• A Knot in the resource graph

• A Knot exists when the reachable set of
nodes is equal to exactly that set of nodes.

Starvation

• Starvation occurs when a running task is
indefinitely prevented from accessing a
resource.

• It differs from deadlock in that involved
tasks are running.

Handling Deadlock

1. Ignore deadlocks until they occur, then
terminate tasks until the problem goes
away.

2. Avoid entering into a state that might
deadlock. Banker’s algorithm does this.

3. Design the system so that deadlock
cannot occur.

Execution Timeline

The program acquires resource A,
releases it and then acquires resource B.

Execution Timeline

The program acquires resource A then
resource B before releasing A.

4

Multiple Thread Timelines

• Consider the execution timelines of two
threads drawn with the flow of thread 1
perpendicular to the flow of thread 2.

• In the following example, thread 1 acquires
resource A then resource B while thread 2
wants resource B then resource A.

Unsafe Zone

Deadlock Proofing

• Design the system so that at least one of
the necessary condition cannot hold.

• When proving a system cannot deadlock,
show that one of the conditions cannot
hold.

