Deadlock

COMP755 Advanced Operating
Systems

Deadlock Definitions

» A deadlock occurs when two or more
tasks are waiting for each other and they
cannot proceed.

» Deadlock is a situation where two or more
processes are each waiting for a resource
that another process in the group holds.

» Deadlock is the permanent blocking of a
set of processes.

» Deadlock occurs when waiting processes
cannot be removed from the wait state.

Hung Systems

» Deadlock typically results in “hung”
systems. The program is running, but
nothing is happening.

« If there is a possible order of execution
that will allow all tasks to complete, then
the system is not deadlocked.

Deadlock Example

» Consider a program with two threads.
Each thread requires exclusive access to
the resources A and B.

Thread 1 Thread 2
Acquire resource A Acquire resource B
Acquire resource B Acquire resource A

Both threads are deadlocked.

Necessary Conditions for Deadlock

Mutual Exclusion
No Preemption
Hold and Wait
Circular wait

Pobd -~

Mutual Exclusion

+ Deadlock will only occur if a resource
cannot be simultaneously used by more
than one task.

+ Some resources can easily be shared
— Read only files
— Code with no shared data




No Preemption

* A higher priority thread cannot “steal” a
resource from a lower priority thread.

» Some resources, such as the CPU, can be
easily preempted and given to another
thread. The dispatcher frequently
suspends a thread and runs another.

If one thread can take resources from

another, then it can grab all it needs and
run to completion.

Hold and Wait

» A thread has to have a shared resource
allocated to it and be waiting for another
resource.

+ If a thread gets all of its necessary
resources at once, then it will not
deadlock.

» A thread has to have one resource and be
waiting for more to deadlock.

Circular Wait

» The resource diagram has to have a cycle,
a path following the directed edges that
starts at one point and returns to the same
point.

» A deadlock can not occur unless the graph
of tasks and resources contains a cycle.

Circular Wait Graph

» Tasks are circles and resources are boxes
with one dot for each unit of resource.

4@

2 units of Task
a resource
waiting

Deadlock Cycle

L -

Necessary but Not Sufficient

» The four requirements for deadlock:
1. Mutual Exclusion
2. No Preemption
3. Hold and Wait
4. Circular wait
* These must be present for a deadlock to
occur, but their presence does not
necessarily mean there must be a
deadlock.




Non-Deadlock Cycle

Necessary and Sufficient
Conditions for Deadlock

* 1 -3 as before
* A Knot in the resource graph

» A Knot exists when the reachable set of
nodes is equal to exactly that set of nodes.

Starvation

« Starvation occurs when a running task is
indefinitely prevented from accessing a
resource.

« |t differs from deadlock in that involved
tasks are running.

Handling Deadlock

1. Ignore deadlocks until they occur, then
terminate tasks until the problem goes
away.

2. Avoid entering into a state that might
deadlock. Banker’s algorithm does this.

3. Design the system so that deadlock
cannot occur.

Execution Timeline

Ny
-

The program acquires resource A,
releases it and then acquires resource B.

Execution Timeline

I
o & =
o

\
p—y

The program acquires resource A then
resource B before releasing A.




Multiple Thread Timelines

» Consider the execution timelines of two
threads drawn with the flow of thread 1
perpendicular to the flow of thread 2.

+ In the following example, thread 1 acquires
resource A then resource B while thread 2
wants resource B then resource A.

Unsafe Zone

Deadlock Proofing

+ Design the system so that at least one of
the necessary condition cannot hold.

* When proving a system cannot deadlock,
show that one of the conditions cannot
hold.




