
Java Classes
and Methods
GEEN163 Introduction to Computer

Programming

“Our object in the construction of

the state is the greatest happiness of

the whole, and not that of any one

class.”

Plato

TuringsCraft

• Read the material in chapter 7 of the textbook

• Answer the questions in section 7 of the
TuringsCraft tutorial

– 4 points for each correct answer

– 100 point maximum

• Due by midnight on Monday, April 1

Programming Homework

• A new programming assignment has been
posted on Blackboard

• This program draws a picture of the night sky

• You are required to write a method

TA Reorganization

Luis Cabrera will be the recitation instructor

on Thursdays & Fridays replacing Micayla

Goodrum

Parameters Must Match Type
• Method
double myfunc(int cat, String dog){

 … }

• Calling program
int cow;

String bull;

double goat;

 goat = myfunc(cow, bull);

Variable Type

• In the method header, you need to specify the
variable type

int myFunc(int trout, double salmon)

• When you call the method, you do not need
to specify the type of the parameters

int fish, cow = 47;

fish = myFunc(cow, 3.13);

Argument Values Copied

• When a method call is executed, the values of
the argument variables (or constants) are
copied to the parameter variables.

• The method uses a copy of the argument
variables.

Parameter Values Copied

public class PassParm {

 public static void main(String[] args){

 int cat = 5, bull = 7, dog = 1;

 dog = doIt(cat, bull);

 System.out.println("main "+dog);

 }

 static int doIt(int ant, int bug) {

 System.out.println("doIt"+ant+" "+bug);

 return ant + bug;

 }

} Displays: doIt 5 7

 main 12

Write a method with your team

• Write a method that takes a double parameter
and returns the square of that number

Possible Solution

• Write a method called square that takes a
double parameter and returns the square of
that number

double square(double num) {

 return num * num;

}

Accessing Object Fields
• The field variables of an object can be used by

any method of that object just like a variable
defined in the method.

public class Student {
 int identifier;
 public double grade;
 public String name;
 public void setGrade(double score) {
 grade = score;
 }

}

What is displayed?
int cat = 7, dog = 2;

dog = tryit(cat);

System.out.println("main "+dog);

 - - - - - - - -

int tryit(int cow) {

 int goat = cow + 3;

 System.out.print("tryit "+ goat);

 return goat;

} A. tryit 10 main 10

B. main 10 tryit 10

C. tryit 10 main 7

D. main 2 tryit 10

Access Outside the Class

• Public field variables can be accessed from
outside of the class.

• To access a field variable, write the object
name, a period and then the field variable’s
name

Student fred = new Student();

fred.name = "Fred Smith";

Access Rights

Data values or methods can be used if specified:

• public – anywhere

• private – only in that class

• protected – only in that class or any class that
extends it

• nothing – only in that package

Private example
public class Student {

 public int id;

 private double grade;

 public String name;

 public setGrade(double score) {

 grade = score;

 }

 public double getGrade() {

 return grade;

 }

}

Accessing the Example
• In another class, you can access the public but

not the private values

public class myProg {

 public static void main(String[] x) {

 Student fred = new Student();

 fred.name = “Sally”;

 fred.grade = 4.0; // not allowed

 fred.setGrade(4.0); // allowed

 }

}

Data Abstraction

• Classes are described by their interface, that is,
what they can do and how they are used.

• The internal data and operation are hidden.

• In this way if the internal operation is changed,
programs using the class will not be impacted
as long as the interface remains consistent.

What is cat?
public class Student {

 public int id;

 public double getIdPlus() {

 return id + 5;

 }

}

 // in another program

Student dog = new Student();

dog.id = 3;

int cat = dog.getIdPlus();

A. 3

B. 5

C. 8

D. Error

Method Purpose

• Constructors

– Initialize an object

• Modifiers

– Change the values of an object

• Accessors

– Return the value of a object without changing
anything

• Function

– Compute some value or perform some action

Constructors

• A constructor method is automatically called
when an object is created

• The name of the constructor method is always
the same as the class name

• Constructors can be used to initialize the
values of an object’s variables

• Constructors may or may not have parameters

• Constructors do not have a return type. They
are not void

Constructor Example

public class Widget {

 private int count = 0;

 /* constructor method */

 public Widget(int aardvark) {

 count = aardvark;

 }

}

Using Constructors

• The constructor method is called when you
create an object

Widget gorilla;

gorilla = new Widget(5);// constructor

Tryit

public class Rodent{

 double rat;

 int mouse;

 // Write a constructor method to initialize
 // the class variables
}

 // in another program using the Rodent class

Rodent mole = new Rodent(5.6, 14);

Rodent gerbil = new Rodent(3.25, 8);

Possible Constructor
public class Rodent{

 double rat;

 int mouse;

 public Rodent(double vole, int shrew) {

 rat = vole;

 mouse = shrew;

 }

}

 // in a program using the Rodent class

Rodent mole = new Rodent(5.6, 14);

Rodent gerbil = new Rodent(3.25, 8);

this

• The Java keyword “this” means this object

• You can use this to access anything of the
object, but not the class

• If you have a field named xyz, then you can
access the field as this.xyz

Another Constructor Example

public class Widget {

 private int count = 0; // field variable

 /* constructor method */

 public Widget(int count) { // parameter

 this.count = count;

 }

}

Constructors are Usually Simple

• Most constructor methods simply copy the
parameter to a class variable

• Some constructors set class variables to a
constant

• Some constructors are more complex. The
constructor for Scanner may have to check on
a network connection

Multiple Constructors

• A class may have more than one constructor

• Different constructors must have a different
number or type of parameters

• All constructors must have the same name as the
class

• This is known as polymorphism

Two Line Constructors
public class Line {
 double slope; // slope of the line
 double intercept; // Y intercept of the line

 public Line(double tilt) { // constructor

 slope = tilt;
 intercept = 0.0;
 }
 public Line(double tilt, double y) { // constructor

 slope = tilt;
 intercept = y;
 }
}

Accessor Methods

• Accessor methods return some value from the
object

• Accessor methods do not usually change
anything in the object

• Examples of accessor methods include:

– String length() method

Modifier Methods

• Modifier methods change the state of an
object

• A modifier method may just set the value of a
single variable or may perform a lengthy
sequence of actions

• Modifier methods are often void methods

Example Class
public class Widget {
 private int count = 0; // class data value

 public Widget(int num) { // constructor
 count = num;
 }
 public void inc() { // method to increment
 count++;
 }
 public int getCount() { // accessor method
 return count;
 }
 public void setCount(int value) { // modifier method
 count = value;
 }
}

What is displayed?
Widget cow = new Widget(3);

cow.setCount(7);

cow.inc();

int bull = cow.getCount();

System.out.println(bull);

A. 3

B. 4

C. 7

D. 8

Naming Convention

• Class names start with an uppercase letter

• Objects are written in lowercase

• Method names are in lowercase

• Constructors must have the same name as the
class

• Accessor methods have names that can be
used as nouns

• Modifier methods have names that can be
used as verbs

Calling Methods

• In Java you can use a method of an object by
writing the object’s name, a period, the name
of the method.

 Widget thing = new Widget();

thing.whatever(5);

• This calls the whatever method of Widget
object thing passing it an integer 5 as a
parameter

Inheritance

• You can extend an existing class to add new
features

• We used inheritance to extend JApplet

• The new class has all of the data values and
methods of the parent classes

Inheritance Example

• Some of our programs have input numbers
from the JTextField

• The getText method of JTextField only returns
a string

• We can extend JTextField to add methods to
get a double or an int

Extending JTextField

public class NumField extends

 javax.swing.JTextField {

 public int getInt() {

 String text = getText();

 int number = Integer.parseInt(text);

 return number;

 }

 public double getDouble() {

 String text = getText();

 double number = Double.parseDouble(text);

 return number;

 }

}

Using NumField
// class variables at the beginning

NumField inYear = new NumField();

NumField inLoan = new NumField();

 ...

public void actionPerformed(

 java.awt.event.ActionEvent thing) {

 double loan = inLoan.getDouble();

 double m = inYear.getDouble() * 12.0;

 double pay = loan * etc.;

 answer.setText("Monthly payments of $"+pay);

}

Parent Method Available

• You do not need the Java source code of a class
to inherit from it

• You can extend a system class

• All of the original methods are available

NumField inYear = new NumField();

inYear.setText(“default”);

No Thursday lab at 10:00

• The Fall Convocation is Thursday

• All classes from 10:00 to noon on Thursday
will be cancelled

• The 8:00 Thursday lab will be held as usual

TuringsCraft

• Read the material in chapter 7 of the textbook

• Answer the questions in section 7 of the
TuringsCraft tutorial

– 4 points for each correct answer

– 100 point maximum

• Due by 5:00pm on Monday, April 1

Programming Homework

• A new programming assignment has been
posted on Blackboard

• This program draws a picture of the night sky

• You are required to write a method

