Security Policy Models

Bell-LaPadula Model

• The Bell-LaPadula Model is a state machine model used for enforcing access control in government and military applications
• Developed by David Elliott Bell and Leonard J. La Padula in 1973
• Basis for many confidentiality policies

Bell-LaPadula Model, Step 1

• Security levels arranged in linear ordering
 – Top Secret: highest
 – Secret
 – Confidential
 – Unclassified: lowest
• Both people and objects have a security level
 – People or subjects have a clearance level, L(s)
 – Objects have security classification, L(o)

Example

<table>
<thead>
<tr>
<th>L</th>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Top Secret</td>
<td>Tanya</td>
<td>Personnel Files</td>
</tr>
<tr>
<td>3</td>
<td>Secret</td>
<td>Sam</td>
<td>E-Mail Files</td>
</tr>
<tr>
<td>2</td>
<td>Confidential</td>
<td>Claire</td>
<td>Activity Logs</td>
</tr>
<tr>
<td>1</td>
<td>Unclassified</td>
<td>Umoja</td>
<td>Telephone Lists</td>
</tr>
</tbody>
</table>

• Tanya can read all files
• Claire cannot read Personnel or E-Mail Files
• Umoja can only read Telephone Lists
Reading Information

• Information flows up, not down
 – “Reads up” disallowed, “reads down” allowed
• Simple Security Condition (Step 1)
 – Subject s can read object o iff, \(L(o) \leq L(s) \) and s has permission to read o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 – Sometimes called “no reads up” rule

Writing Information

• Information flows up, not down
 – “Writes up” allowed, “writes down” disallowed
• Property (Step 1)
 – Subject s can write object o iff \(L(o) \geq L(s) \) and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 – Sometimes called “no writes down” rule

Basic Security Theorem, Step 1

• If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *-property, step 1, then every state of the system is secure
 – Proof: induct on the number of transitions

Bell-LaPadula Model, Step 2

• Expand notion of security level to include categories
• Security level is \((clearance, category\ set) \)
• Examples
 – (Top Secret, {NUC, EUR, ASI})
 – (Confidential, {EUR, ASI})
 – (Secret, {NUC, ASI})
Dominating

- The dom relation ("Dominates") specifies that the levels are greater or equal and the categories includes all items in the dominated categories.
- \((L(a), C) \text{ dom} (L(b), C')\) iff \(L(a) \geq L(b)\) and \(C' \subseteq C\)
- Not a symmetric or asymmetric relation
- Examples
 - (Top Secret, \{NUC, ASI\}) dom (Secret, \{NUC\})
 - (Secret, \{NUC, EUR\}) dom (Confidential,\{NUC, EUR\})
 - (Top Secret, \{NUC\}) dom (Confidential, \{EUR\})
 - (Confidential, \{EUR\}) dom (Top Secret, \{NUC\})

Levels and Ordering

- Security levels partially ordered
 - Any pair of security levels may (or may not) be related by dom
- "dominates" serves the role of "greater than" in step 1
 - "greater than" is a total ordering, though

Reading Information

- Information flows up, not down
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
 - Subject s can read object o iff \(L(s) \text{ dom} L(o)\) and s has permission to read o
 - Sometimes called “no reads up” rule

Writing Information

- Information flows up, not down
 - “Writes up” allowed, “writes down” disallowed
- *-Property (Step 2)
 - Subject s can write object o iff \(L(o) \text{ dom} L(s)\) and s has permission to write o
 - Sometimes called “no writes down” rule
Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure.

What type of access is allowed?

Paul, cleared for (TOP SECRET, {A,C}), wants to access a document classified (SECRET, {B,C})

1. read
2. write
3. both
4. none

What type of access is allowed?

Mary, cleared for (CONFIDENTIAL, {C}), wants to access a document classified (CONFIDENTIAL, {B})

1. read
2. write
3. both
4. none

What type of access is allowed?

Fred, cleared for (SECRET, {C}), wants to access a document classified (CONFIDENTIAL, {C})

1. read
2. write
3. both
4. none
What type of access is allowed?

Susan, cleared for (TOP SECRET, \{A,C\}), wants to access a document classified (CONFIDENTIAL, \{A\})

1. read
2. write
3. both
4. none

What type of access is allowed?

Joe has no clearance (UNCLASSIFIED), wants to access a document classified (CONFIDENTIAL, \{B\})

1. read
2. write
3. both
4. none

Problem

• Colonel has (Secret, \{NUC, EUR\}) clearance
• Major has (Secret, \{EUR\}) clearance
 – Major can talk to colonel (“write up” or “read down”)
 – Colonel cannot talk to major (“read up” or “write down”)
• Clearly absurd!

Solution

• Define maximum, current levels for subjects
 – $\text{maxlevel}(s) \text{ dom curlevel}(s)$
• Example
 – Treat Major as an object (Colonel is writing to him/her)
 – Colonel has maxlevel (Secret, \{NUC, EUR\})
 – Colonel sets curlevel to (Secret, \{EUR\})
 – Now L(Major) dom curlevel(Colonel)
 • Colonel can write to Major without violating “no writes down”
 – Does $L(s)$ mean $\text{curlevel}(s)$ or $\text{maxlevel}(s)$?
Principle of Tranquility

- **Raising object’s security level**
 - Information once available to some subjects is no longer available
 - Usually assume information has already been accessed, so this does nothing
- **Lowering object’s security level**
 - The *declassification problem*
 - Essentially, a “write down” violating *-property
 - Solution: define set of trusted subjects that sanitize or remove sensitive information before security level lowered

Types of Tranquility

- **Strong Tranquility**
 - The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system
- **Weak Tranquility**
 - The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system

Biba Integrity Model

- Formal state transition system that describes a set of access control rules designed to ensure data integrity.
- Developed by Kenneth J. Biba in 1977
- The model is designed so that subjects may not corrupt data in a level ranked higher than the subject, or be corrupted by data from a lower level than the subject.

Up and Down

- This security model is directed toward data integrity (rather than confidentiality) and is characterized by the phrase: “no read down, no write up”
- This is in contrast to the Bell-LaPadula model which is characterized by the phrase “no write down, no read up”.
Reading and Writing

• Users can only create content at or below their own integrity level (a monk may write a prayer book that can be read by commoners, but not one to be read by a high priest).
• Users can only view content at or above their own integrity level (a monk may read a book written by the high priest, but may not read a pamphlet written by a lowly commoner).

Information Transfer Path

• An information transfer path is a sequence of objects $o_1, ..., o_{n+1}$ and corresponding sequence of subjects $s_1, ..., s_n$ such that $s_i \prec o_i$ and $s_i \bowtie o_{i+1}$ for all i, $1 \leq i \leq n$.
• Idea: information can flow from o_1 to o_{n+1} along this path by successive reads and writes.

Triad Programming Contest

• Saturday morning, April 10
• Teams of 3 students writing programs as fast as possible
• Prizes
 – 1st Place $300.00 ($100 per member)
 – 2nd Place $225.00 ($75 per member)
 – 3rd Place $150.00 ($50 per member)
• Contact Prof. Carr (carr@redux.comp.ncat.edu) if you are interested

Teaching Evaluation

• You should have received an email at your ncat account explaining how to do the teaching evaluation
• Teaching evaluations are important
• Answer honestly