RISC Architectures

COMP375 Computer Architecture and Organization

RISC Design Principles

• Simple operations
 – Simple instructions that can execute in one cycle
• Register-to-register operations
 – Only load and store operations access memory
 – Rest of the operations on a register-to-register basis
• Simple addressing modes
 – A few addressing modes (1 or 2)

RISC Design Principles

• Large number of registers
 – Needed to support register-to-register operations
 – Minimize the procedure call and return overhead
• Fixed-length instructions
 – Facilitates efficient instruction execution
• Simple instruction format
 – Fixed boundaries for various fields

RISC Design Principle

• Start an instruction every cycle

 • Simple, fixed length instructions are easy to pipeline.
 • Only two instruction have memory operands all other operands are in registers.
 • Delayed branches

COMP375
Example Differences

<table>
<thead>
<tr>
<th></th>
<th>CISC</th>
<th>RISC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VAX 11/780</td>
<td>Intel 486</td>
</tr>
<tr>
<td># instructions</td>
<td>303</td>
<td>235</td>
</tr>
<tr>
<td>Addr. modes</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Inst. size (bytes)</td>
<td>2-57</td>
<td>1-12</td>
</tr>
<tr>
<td>GP registers</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

RISC Traits

- Pipelined
- Simple instructions
- Few instructions
- No microcode
- Few addressing modes
- Load/Store architecture
- Sliding register stack
- Delayed branches
- Fast

CICS advantages include:

1. Sliding register stack
2. Instructions designed to match high level language features
3. Load/Store architecture
4. Large microcode memory

Current RISC Systems

- **PowerPC** – The processor in the Apple Power Mac. Produced by IBM and Apple.
- **Sparc** – The processor in Sun workstations and servers. Produced by Sun Microsystems. First commercial RISC.
- **MIPS** – Frequently used in embedded devices.
- **Itanium** – In new servers replacing the Intel Pentium. Produced by Intel.
Intel Itanium®

- Intel's latest RISC system.
- The current processor is the Itanium 2.
- Intel seems to indicate that this is the replacement for the Pentium chip.

Support of Pentium Instructions

- The Itanium can execute both Itanium instructions and Pentium (IA-32) instructions
- There are jump to IA-32/Itanium instructions

Parallelism

Parallel activities can be done at many different levels.

- Parallel, independent programs
 - Multi-core processors
- Instruction Level Parallelism (ILP)
 - Itanium
 - It is easier to detect ILP in long sequences of instructions that are not broken by jumps.

Discovering Parallelism

- Most programs are written as a sequential stream of instructions.
- The CPU has to discover any parallelism to support pipelining and superscalar execution.
- The compiler has a much bigger picture of the program and can easily recognize opportunities for parallelism.
- It can be difficult for the compiler to pass parallelism information to the CPU.
Instruction Bundles

- Explicitly Parallel/instruction Computing (EPIC)
- Three 41 bit instructions are grouped into a bundle with a 5 bit template.
- There must be no dependencies within the instructions of a bundle.

Compiler to Processor Hints

- Every memory load and store in the Itanium architecture has a 2-bit cache hint field
- The compiler can provide a hint to indicate if a branch is likely to be taken.
- Templates define which execution units will be used and if dependencies exist.

A 2.0 GHz Itanium will run faster than a 3.0 GHz Pentium because

1. Itanium Hz are faster than Pentium Hz
2. The Itanium can run three instructions at once.
3. The Itanium cost more
4. The Itanium is Hyper-threaded.