Disk Arrays

COMP375 Computer Architecture and Organization

Large Storage Needs

- Some applications need more storage than a single disk can hold.
- Multiple disks need to be used.
- Such application may wish to have quick access to large files.

Goals

- Understand the different options for improving disk reliability and performance.
- Be able to determine the appropriate RAID solution for a given situation.
- Be able to calculate the overhead for different RAID configurations.

RAID

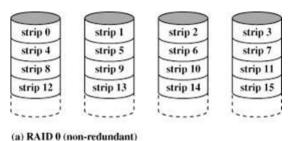
- Redundant Array of Independent Disks
- A collection of disks are used as one large unit of mass storage.
- Multiple disks operating simultaneously can increase the data transfer rate.
- Extra data stored on the disks can recover the information should a disk fail.

Historical Note

- In the mid 1980's mainframe disk drives were physically large and expensive, about \$50,000.
- PC disk drives were about 2/3 as fast, held about 1/5 as much and cost under \$1,000.
- People began to wonder if they couldn't use a collection of small drives.
- Redundant Array of Inexpensive Disks

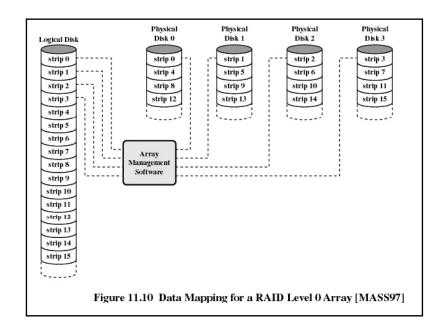
Hardware or Software

- RAID can be implemented by the I/O controller or by software in the OS.
- A RAID controller hides the RAID functions from the OS and makes a set of disk drives look like a single large drive.
- The OS can implement RAID on a set of regular disks. The user is unaware of the RAID features.

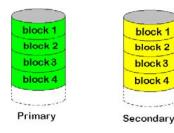

Failure Rates

- As the number of parts in a system increases, so does the probability of failure
- A device's reliability can be expressed as its probability of failure, **P**.
- If a system is composed of N components each with reliability P, the reliability of the system is P^N

RAID Types


- RAID 0 Striping
- RAID 1 Mirroring
- RAID 2 Hamming code error recovery
- RAID 3 Bit-interleaved parity
- RAID 4 Block-level parity
- RAID 5 Block-level distributed parity
- RAID 6 Dual redundancy

RAID 0 (non-redundant)



- •Improved transfer rate
- Decreased reliability

http://www.acnc.com/04_01_00.html

RAID 1 (mirrored)

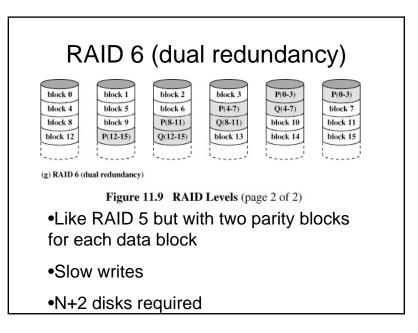
- •Improved Reliability
- •Slightly slower writes.
- Possibly faster reads
- Twice the disk space required

XOR Parity

Consider the exclusive OR of several values

$$X = A \oplus B \oplus C$$

• If you XOR any of the three values, you will get the fourth.


$$B = X \oplus A \oplus C$$

 RAID 3, 4, 5 & 6 write the XOR of data to an additional disk to provide recovery in the event a disk fails.

COMP375

RAID 4 (block-level parity) block 0 block 1 block 2 block 3 P(0-3) block 4 block 5 block 6 block 7 P(4-7) block 8 block 9 block 10 block 11 P(8-11) block 13 block 14 block 15 P(12-15) block 12 (e) RAID 4 (block-level parity) Figure 11.9 RAID Levels (page 2 of 2) Rarely used

RAID 5 (distributed block parity) block 2 block 0 block 1 block 3 P(0-3) block 4 block 5 block 6 P(4-7) block 7 block 8 block 9 P(8-11) block 10 block 11 block 15 block 12 P(12-15) block 13 block 14 P(16-19) block 16 block 17 block 18 block 19 RAID 5 (block-level distributed parity) Striping improves read performance Parity improves reliability •N+1 disks are required

Synchronized Rotation

- All of the drives in an disk array spin together
- Most disk drives have a feature allowing synchronization.
- Raid 0 simultaneously reads a block from all drives. If they were not synchronized, the system would have to wait for the last drive.
- Synchronized rotational delay = spin/2
- Unsynchronized rotational delay = spin*(n-1)/n

RAID Comparison

RAID	Disks	Reads	Writes	Survives failures
0	N	faster	faster	0
1	2N	slightly faster	slightly slower	1
5	N+1	faster	slightly slower	1
6	N+2	faster	slightly slower	2