History of Computers

COMP375

Computer Architecture and Organization
“What we didn’t realize then was that the integrated circuit would reduce the cost of electronic functions by a factor of a million to one, nothing had ever done that for anything before.”

Jack Kilby
inventor of the integrated circuit
Goals

- Understand that the relative performance and cost of components has impacted computer design
- Note the drop in the cost of computing
- Know Moore’s Law
- Recognize that clock speed is not the major contributor to improved performance

- Look at some neat old computer stuff
Relative Performance & Cost

• As computers evolved, the performance and cost of different components (such as memory, disk drives or digital logic) have improved at different rates

• If a component is relatively expensive or slow, designs will usually minimize the component
Continual Drop in Prices

from Operating Systems Concepts, 7th ed by Silberschatz, Galvin and Gagne
Continual (but not steady) Drop in Prices

Price per megabyte of DRAM, from 1981 to 2004.

from Operating Systems Concepts, 7th ed by Silberschatz, Galvin and Gagne
data from the U.S. Bureau of Labor Statistics
Underlying Technologies

• Some ideas are not feasible unless the underlying technologies are sufficiently capable
 – Windows 10 will not run on my 8086 PC with only 640K of RAM, 10 MB disk and a 4.77 MHz clock
 – Disk Drives in the 1970’s were the size of washing machines
 Not very useful for laptops or phones
 – Voice processing takes a lot of CPU power
Historical Progression

• People have worked to build “thinking” devices for a long time
• Improvements usually build on earlier work
• *Before the 1960’s “Computer” was a job title, not a machine*
Ancient Computing

- Antikythera mechanism designed to calculate astronomical positions
- Built around 150 – 100 BC
- Pulled from the sea in 1901

<table>
<thead>
<tr>
<th>Date</th>
<th>Who</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>~1000 BC</td>
<td>?</td>
<td>Abacus</td>
</tr>
<tr>
<td>1621</td>
<td>William Oughtred</td>
<td>Slide Rule</td>
</tr>
<tr>
<td>1642</td>
<td>Blaise Pascal</td>
<td>Adding machine</td>
</tr>
</tbody>
</table>
Punch Cards

- In 1804-05 Joseph-Marie Jacquard invented a loom that used punch cards to specify the pattern.
In 1882 Herman Hollerith created a punch card tabulating machine. It was used to calculate the 1890 census.

Punched cards were used through the late 1970s.
Charles Babbage

Charles Babbage built a mechanical computer starting in 1822. He never completed the machine.
Ada Lovelace

Augusta Ada, Countess of Lovelace, was the daughter of Lord Byron and friend of Charles Babbage. She is considered the first computer programmer.
Alan Turing

- In 1936 Alan Turing invented the theoretical Turing Machine
- With Alonzo Church developed the Turing-Church thesis

 “Every function which would naturally be regarded as computable, can be computed by a Turing machine”
- He broke the code of the German Enigma machine in WWII
ABC machine

- John Atanasoff and Clifford Berry built the Atanasoff-Berry Computer (ABC) in 1939
ENIAC

• **Electronic Numerical Integrator And Computer**
• John Eckert and J. Presper Mauchly
• University of Pennsylvania
• Trajectory tables for weapons
• Started 1943
• Finished 1946
 – Too late for war effort
• Used until 1955
ENIAC - details

- Decimal (not binary)
- 20 registers of 10 digits
- Programmed manually by switches and wiring
- 18,000 vacuum tubes
- 30 tons
- 15,000 square feet
- 140 kW power
- 5,000 additions/sec
von Neumann Architecture

- Stored Program concept
- Main memory storing programs and data
- ALU operating on binary data
- Control unit interpreting instructions from memory and executing
- Input and output equipment operated by control unit
- Completed 1952
Core Memory

- Invented by An Wang and Way-Dong Woo in 1949
- A bit is stored by magnetizing a ring of iron
- Cycle times of about 6µs
- Non-volatile storage
Transistors

• Replaced vacuum tubes
• Smaller
• Cheaper
• Less heat dissipation
• Solid State device
• Made from silicon (sand)
• Invented 1947 at Bell Labs
• William Shockley et al.
Semiconductor Memory

• Created in 1970 at Fairchild corporation
• Size of a single core
 – i.e. 1 bit of magnetic core storage
• Non-destructive read
• Much faster than core
• Capacity approximately doubles each year
Moore’s Law

• Increased density of components on chip
• Gordon Moore – co-founder of Intel

• **Number of transistors on a chip doubles every 18 months**
 • Cost of a chip has remained almost unchanged
 • Higher packing density means shorter electrical paths, giving higher performance
 • Reduced power and cooling requirements
 • Fewer interconnections increases reliability
MOORE'S LAW

Dual-Core Intel® Itanium® 2 Processor
Intel® Itanium® 2 Processor
Intel® Itanium® Processor
Intel® Pentium® IV Processor
Intel® Pentium® III Processor
Intel® Pentium® II Processor
Intel® Pentium® Processor
Intel® 486™ Processor
Intel® 386™ Processor
Intel® 8086
Intel® 8080
Intel® 8085
Intel® 4004

transistors

10,000,000,000
1,000,000,000
10,000,000
1,000,000
100,000
10,000
1,000
Packing more transistors into less space has driven dramatic reductions in their cost and in the cost of the products they populate.
Analog Computers

• An analog computer does not store information digitally
• Values are stored as voltage levels
• Analog computers are particularly useful solving nonlinear simultaneous differential equations
• An electric circuit can be defined by an equation. An analog computer is programmed by creating a circuit that follows a desired equation.
IBM

- Punched-card processing equipment
- 1953 - the 701
 - IBM’s first stored program computer
 - Scientific calculations
- 1955 - the 702
 - Business applications
- Lead to 700/7000 series
IBM 360 series

• Introduced in April 1964
• Replaced (& not compatible with) 7000 series
• Cost $133K to $5.5M ($42.8M in today’s $)
• First planned “family” of computers
 – Similar or identical instruction sets
 – Similar or identical O/S
 – Increasing speed
 – Increasing I/O ports
 – Increasing memory size
 – Increasing cost
• Multiplexed switch structure
Speed

- An IBM System/360 could execute between 0.0018 to 1.7 Million Instructions Per Second (MIPS) depending on the model.
- An iPhone 5s can execute about 18,200 MIPS.
- The Tianhe-2 supercomputer can execute about 34,000,000,000 MIPS.
DEC PDP-8

- Introduced in 1964
- First minicomputer
- Did not need air conditioned room
- Small enough to sit on a lab bench
- $16K vs. $100K+ for IBM 360
- Used a bus structure
Calculators

Wang 720 was a programmable calculator

HP-35 introduced in 1973 for $399
$2,169 in today’s dollars
• 1971 - 4004
 – First microprocessor
 – All CPU components on a single chip
 – 4 bit

• Followed in 1972 by 8008
 – 8 bit
 – Both designed for specific applications
Pentium Evolution (1)

• 8080
 – first general purpose microprocessor
 – 8 bit data path
 – Used in first personal computer – Altair

• 8086
 – much more powerful
 – 16 bit
 – instruction cache, prefetch few instructions
 – 8088 (8 bit external bus) used in first IBM PC

• 80286
 – 16 Mbyte memory addressable
 – up from 1Mb

• 80386
 – 32 bit
 – Support for multitasking
Pentium Evolution (2)

• 80486
 – sophisticated powerful cache and instruction pipelining
 – built in math co-processor
• Pentium
 – Superscalar
 – Multiple instructions executed in parallel
• Pentium Pro
 – Increased superscalar organization
 – Aggressive register renaming
 – branch prediction
 – data flow analysis
 – speculative execution
Pentium Evolution (3)

- Pentium II
 - MMX technology
 - graphics, video & audio processing
- Pentium III
 - Additional floating point instructions for 3D graphics
- Pentium 4
 - Further floating point and multimedia enhancements
- Itanium
 - 64 bit RISC processor
- Itanium 2
 - Hardware enhancements to increase speed
Intel Performance

- Improvements in chip architecture
- Increases in clock speed

- Hyperthreading (multicore)
- Longer pipeline, double-speed arithmetic
- Full-speed 2-level cache
- MMX multimedia extensions
- Speculative out-of-order execution
- Multiple instructions per cycle
- Internal memory cache
- Instruction pipeline

Theoretical maximum performance (million operations per second)

Source: Stallings textbook
Incentive for Dual Core

- Intel reports that underclocking a single core by 20 percent saves half the power while sacrificing just 13 percent of the performance.

Source: IEEE Spectrum April, 2008
First Assignments

• Take the **timed** online quizzes
• Run at williams.comp.ncat.edu/quiz
• Solutions available on the class website
• Complete the quiz by noon on:
 • Metric prefixes Monday, August 26
 • Number conversion Friday, August 30
 • Base 2 logarithms Friday, September 6

• *The quizzes work best with browsers other than Internet Explorer*