

What is Good Performance

• Which is the best performing jet?

Airplane Pass	engers	Range (mi)	Speed	(mph)	
Boeing 737-100 Boeing 747 BAC/Sud Concorde Douglas DC-8-50	101 470 132 146	630 4150 4000 8720	598 610 1350 544		
The Concorde is the fastest.					
The Boeing 747 is the largest.					
The DC-8 has the longest range.					

©2004 Morgan Kaufmann Publishe

1

Benchmark at Home and Office

	Simple program	
Home	1.00	
Office	3.41	

Home CPU is an Intel 2.0 GHz Pentium 4 Office CPU is an Intel 3.16 GHz Core 2 Duo Pentium 4

Benchmark at Home and Office

	Simple program	Program with 2 threads
Home	1.00	0.99
Office	3.41	5.86

Home CPU is an Intel 2.0 GHz Pentium 4 Office CPU is an Intel 3.16 GHz Core 2 Duo Pentium 4

Defining Performance

- Response Time The wall clock time it takes for a computer to complete a task. This is the performance measure of most interest to desktop users.
- Throughput The amount of work that can be accomplished, such as web pages served per second. Servers are often measured in this manner.

Many Applications

- Some programs do a lot of I/O. They run best on a computer with lots of RAM and fast disks.
- Some programs are CPU bound. The run best on a computer with a fast CPU and lots of cache.

Why does having lots of RAM improve disk I/O access?

- 1. Better RAM to cache ratio
- 2. More space for disk caching
- 3. Faster bus access
- 4. It doesn't

Performance Aspects

- Integer arithmetic
- Floating Point arithmetic
- Network throughput
- Disk access time
- Disk throughput
- · Audio and video processing
- Power usage

Clock Rate Isn't Everything

- Different architectures require a different number of Cycles per Instruction (**CPI**).
- CISC processors typically use more CPI, but may accomplish more per instruction.
- RISC processors usually have lower CPI, but it may take more instructions to accomplish a task.

Execution Time

- N = number of instructions executed to run a program
- Hz = Clock rate
- Execution time = N * CPI / Hz
- This gives the execution time, not counting any I/O, system time or time spent on other applications.

What might cause the number of cycles per second to vary?

- 1. Pipeline stalls
- 2. Caching
- 3. Virtual memory
- 4. Interrupts
- 5. All of the above
- 6. None of the above

MIPS

- Millions of Instructions Per Second
- <u>Meaningless</u> Indicator of <u>Performance</u>
- MIPS = clock rate / (CPI * 1,000,000)

"The processor is guaranteed to not run faster than 25 MIPS." – honest salesman

Fastest Computers

	Cores	Peak GFlops
Roadrunner	129,600	1,456,704
Jaguar - Cray XT5	150,152	1,381,400
Pleiades - SGI	51,200	608,829
BlueGene/L	212,992	596,378

Benchmarks

- A benchmark is a program run on different systems whose execution time is used as a measure of system performance.
- A benchmark tells you how long it will take to run THAT program with THAT data.
- Benchmark results may, or may not, correspond to the time it takes to run your application.

SPEC

- Standardized benchmarks from the System Performance Evaluation Corporation
- Several different versions
 - SPEC CINT2000
 - SPEC CFP2000
 - SPECweb2005
 - WinSPEC

Homogeneous Systems

Improvements for a given architecture:

- Increases in clock rate
- Improvements in CPU organization that lowers the CPI
- More cache and wider bus for faster memory access
- Compiler enhancements to reduce the number of instructions executed to perform an application.
- Adding custom instructions.

Speedup

• Speedup is the ratio of the speed of the parallel program compared to the speed of the sequential version.

 $Speedup = rac{Original\ Execution\ Time}{Parallel\ Execution\ Time}$

How to Improve Performance

- Buy more memory
- Buy faster disks
- If you are writing the application
 - use compiler optimization
 - read and write files in large blocks
 - use memory instead of files

Measure System Performance

- All operating systems provide tools to help measure system performance.
- Commonly measured values
 - CPU utilization
 - Number of I/Os to the disk / second
 - Number of page faults / second

SPARC Instruction Set

- The Sun SPARC processor has 32 registers.
- Register R0 is always zero and cannot be changed.
- Instructions are of the form

Add R1, R2, R3

• Where R2 is added to R3 and the result stored in R1.

How can you implement mov R_{dest}, R_{source} ? 1. Add R_{dest}, R_{source}, R0 2. Add R0, R_{dest}, R_{source} 3. Sub R_{dest}, R0, R_{source} 4. Add R0, R0, R0 5. Cannot be done

3 Level Memory Speed

- Assume your have L1 and L2 cache and RAM with hit rates H_1 , H_2 and H_3 (*Note: H1* + H2 + H3 = 1)
- The average memory access time is:

 $avg = H_1^*L1 + H_2^*L2 + H_3^*RAM$