Combinatorial Logic

COMP370
Intro to Computer Architecture

VLSI Production Steps

- Cover the chip with photoresist
- Expose a pattern by shining light through a mask
- Dissolve the exposed photoresist
- Expose the exposed chip to a chemical
- Wash off the photoresist

Not Gate

- •When the input is 1 (current) the upper PNP transistor does not conduct. Power cannot flow to the output
- •The lower NPN transistor does conduct. The output is connected to ground.
- •When the input is 0 (no current) the upper PNP transistor can conduct power to the output.
- •The lower NPN transistor does not connect the output to ground.

- When either A or B is 0, the output is connected to power.
- When both A and B are one, the output is connected to ground.

Α	В	output	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

- When A & B are 0, the output is connected to power.
- When either A or B are one, the output is connected to ground.

Α	В	output	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

NOR Solution

Α	В	F
0	0	0
0	1	1
1	0	0
1	1	0

Alternate Notation

• A circle on the input to a gate represents the NOT of the input.

What equation is equivalent to F = A'B + C'

1.
$$F = ((A + B') * C)'$$

2.
$$F = A' + B * C$$

3.
$$F = ((A' + B) * C')'$$

4.
$$F = (A' + B) * C'$$

Useful Circuits

- Some circuits are frequently used in creating larger circuits.
- Multiplexor (mux) copies one of n inputs to the output based on log₂n selector inputs
- **Demultiplexor** (demux) copies input to one of n outputs based on log₂n selector inputs

Multiplexor

• One of the four inputs $(I_0 - I_3)$ is copied to the output based on the two selectors $(S_0 - S_1)$

NAND gate Multiplexor

• Multiplexors can be created from NAND gates

Demultiplexor

 Copies input to one of n outputs (O₀ – O₃) based on log₂n selector inputs (S₀ – S₁)

Encoders and Decoders

- An encoder is just like a multiplexor with only one inputs being a 1.
- An encoder has n inputs and log₂n outputs.
- The encoder output bits contain the binary number of the one input line that is true.
- A decoder is just like a demultiplexor whose input is always a 1.
- A decoder has n outputs and log₂n inputs.

