
Compiling
Regular

Expressions

COMP360

“Logic is the beginning of wisdom, not
the end.”

Leonard Nimoy

Compiler’s Purpose

• The compiler converts the program source code into a
form that can be executed by the hardware

• The compiler works with the language libraries and
the system linker

Output of a Compiler

•Most language systems compile the source into an
object file of machine language which is linked into an
executable

• Some languages, like Java and C#, are compiled to an
intermediate language which is interpreted

•A compiler can output a high level language

• Some systems interpret and execute the source code
directly

Run Time Compilers

• Java and C# compilers create an intermediate
language that can be interpreted by a virtual machine

•Most virtual machines contain a “Just In Time” (JIT)
compiler that compiles the intermediate language into
machine language for efficiency

Stages of a Compiler

• Source preprocessing

• Lexical Analysis (scanning)

• Syntactic Analysis (parsing)

• Semantic Analysis

•Optimization

•Code Generation

• Link to libraries

Source Preprocessing

• In C and C++, preprocessor statements begin with a #

• The preprocessor edits the source code based on the
preprocessor statements

•#include is the same as copying the included file at
that point with the editor

• The output of the preprocessor is expanded source
code with no # statements

•Old C compilers had a separate preprocessor program

Lexical Analysis

• Lexical Analysis or scanning reads the source code (or
expanded source code)

• It removes all comments and white space

• The output of the scanner is a stream of tokens

• Tokens can be words, symbols or character strings

•A scanner can be a finite state automata (FSA)

Syntactic Analysis

• Syntactic Analysis or parsing reads the stream of
tokens created by the scanner

• It checks that the language syntax is correct

• The output of the Syntactic Analyzer is a parse tree

• The parser can be implemented by a context free
grammar stack machine

Semantic Analysis

• The Semantic Analysis inputs the parse tree from the
parser

• Language requirements not checked by the syntax are
enforced

• This stage determines what the program is to do

• The output of the Semantic Analysis is an
intermediate code. This is similar to assembler
language, but may include higher level operations

Optimization

•Most compilers will attempt to optimize the
intermediate code

• Some compilers will also optimize after code
generation

• There are many optimizations possible such as moving
computations out of loops, avoiding redundant loads
and stores, efficient use of registers, etc.

Code Generation

• The Code Generator inputs the intermediate language
and outputs machine language for the target machine

• The code generator is specific to the machine
architecture

Linking and Loading

•While not truly part of the compiler, the libraries
provide the functionality that is more than just a few
machine language statements

• The linker reads the object files and outputs and
executable file

At which stage will these errors be detected?

String num2go; // A

int dog cat; // B

dog = myFunc(dog); // C

int myFunc(int cat, int cow) { … }

Simple Program

/* This is an example program */

A = Boy + Cat + Dog;

After Lexical Scan

A

=

Boy

+

Cat

+

Dog

;

Parsing

<statement> -> <variable> = <expression>

<variable> -> A | Boy | Cat | Dog

<expression> -> <variable> + <expression>
| <variable>

Compile A = B + C + D

• Intermediate code
Temp1 = B + C
Temp2 = Temp1 + D
A = Temp2

Simple Machine Language

• Load register with B

•Add C to register

• Store register in Temp1

• Load register with Temp1

•Add D to register

• Store register in Temp2

• Load register with Temp2

• Store register in A

Optimized Machine Language

• Load register with B

•Add C to register

• Store register in Temp1

• Load register with Temp1

•Add D to register

• Store register in Temp2

• Load register with Temp2

• Store register in A

Symbol Table

•Many stages of a compiler create and reference a
symbol table

• The symbol table keeps a list of all of the names used
in the program

• To assist debugging, the symbol table can be written
into the output object file. This tells debuggers where
variables are located

• The symbol table can be created by the scanner and
updated by all other stages

Output of Each Stage

• Source preprocessing – expanded source code

• Lexical Analysis – List of tokens

• Syntactic Analysis – Parse Tree

• Semantic Analysis – Intermediate code

•Optimization – Intermediate code

•Code Generation – Object file

• Link to libraries – Executable program

Machines of a Compiler

• Source preprocessing – simple editing

• Lexical Analysis – Finite State Automata

• Syntactic Analysis – Push Down Automata

• Semantic Analysis

•Optimization

•Code Generation

• Link to libraries

State Tables

•An FSA graph can be converted to a table

• The table has cells for each state and each input
symbol

• In the cell goes the next state if the DFA is in that state
and receives that input symbol

• You can consider the state table to be an adjacency
table for the graph

Converting an Example FSA

•Consider the regular expression that begins and ends
with an a and can have an even number of b’s
between them

a (bb)* a

• It can be recognized by the FSA

a

a a

b

b b
1 2 3 4 5

Convert the Graph to a Table

1 2 3 4 5

a 2 5 0 5 0

b 0 3 4 3 0

• The states are listed along the top
• The input symbols are along the side
• For that symbol while in that state, the DFA will go

to the new state given in the table
• State zero represents a final error state

Draw a DFA for this Regular Language

(bb | ba) a+

Possible Solution

(bb | ba) a+

a a

b

b b
1 2 3 4

a

Possible Solution

(bb | ba) a+

a a

b

b b
1 2 3 4

a

Create a state table for the FSA

a a

b

b b
1 2 3 4

a

1 2 3 4

a 0 3 4 4

b 2 3 2 0

Programming a FSA

• It is relatively simple to implement a Finite State
Automata in a modern programming language

• This program can be used to recognize if a string
conforms to a regular language

FSA Program

state = 1

while not end of file {

symbol = next input character

state = stateTable[symbol, state]

if state = 0 then error

}

if state is a terminating state, success

Grouping Input Symbols

• For many FSA programs, it is useful to create an index
value for the input symbols, i.e. a = 0, b = 1

•Often you can have groups of symbols use the same
index value, i.e. all letters have the index 2 and all
numbers have the index 3

Mealy and Moore Machines

• The FSA we have discussed so far simply determine if
the input is valid for the specified language

•An FSA can also produce an output

•A Mealy machine has an output or function associated
with each transition or edge of the graph

•A Moore machine has an output or function
associated with each state or node of the graph

Using Mealy Machines to Create Tokens
•Consider an FSA reading text and creating token of

words separated by spaces or punctuation

•0 = Save character as first letter in a string

•1 = Save character as next letter in a string

•2 = Save the string as a token, handle other symbol

a..z/0

a..z/1

not

a..z/2

Mealy Machine State Table

a..z/0

a..z/1

not

a..z/2

1 2 3

a .. z 2/0 2/1 2/0

not a .. z 1/x 3/2 3/x

New state / Output function

Lexical Analysis with a Mealy Machine

•Compilers can use a Mealy machine to scan the
source code

• The FSA recognizes and discards comments and white
space

•Names, numbers, strings and punctuation are each
output as a list of tokens

•A token is an object that contains one unit of the input
specifying the value and type

Reading

•Read sections 3.1 – 3.3 in the textbook by Wednesday

