
Memory Use
COMP360

“That's the thing about people who think they
hate computers. What they really hate is lousy
programmers.”

Larry Niven

Parameter Passing Paradigms

Call by

• reference

• value (in)

• value result (in out)

• result (out)

• constant value

•name

Stacks

•Many programming languages use
stacks to pass parameters

•Many computer architectures have
stack instructions to help implement
these programming languages

•Most architectures have stack
pointer register. The stack pointer
always points to the top item on the
stack.

Program Memory Organization

Heap

Stack

Global data

Program instructions

Program Memory Organization

Heap

Stack

Global data

Program instructions
Intel method

Function Call Hardware

•All computers have machine language instructions to
support function calls

• The level of hardware support varies with modern
computers providing more support

Intel Call instruction

• The CALL instruction basically pushes the program
counter on the stack and branches to a new location

• There are many versions of the Intel CALL instruction
to support different addressing modes and changes in
privileges

Intel RET instruction

• The RET or return instruction pops a value from the
stack and places it in the program counter register

• Since the program counter contains the address of the
next instruction to execute, this has the effect of
branching back to the calling program

The return address pushed on the stack
points to an address in

A. program instructions

B. global data

C. stack

D. heap

E. none of the above

Basic Steps to Call a Method

•Compute any equations used in the parameters, such
as x=func(a + b);

•Push the parameter values on the stack

• Execute a call instruction to push the return address
on the stack and start execution at the first address of
the function

Upon function entry

• Save the contents of the registers
• Many systems have the convention that a method should

return with the registers just the way they were when
called

• Link the activation records

• Increase the stack pointer to reserve memory for the
local variable

• Start executing the function code

Upon function exit

•Reduce the stack by the size of the local variable

•Pop the register values

• Execute the return instruction to pop the address
from the stack into the program counter

When a method is called many times in a
program, how does it know where to return?

A. Call address in the machine language

B. Return address on the stack

C. Returns to earliest call in the source code

D. Depends on count in Program Counter

Activation Records

•An activation record or frame contains the stack
information for a method call

• The activation records are linked together

Stack Activation Frame Format
locals The local variables of the method. This can vary

in size.

Frame pointer The address of the previous activation frame.

Return address The address of the instruction after the method
call in the calling program.

parameter 1 The first parameter to the method

parameter 2 The second parameter to the method

Example Function Call
•Consider the function

void thefunc(Widget b, int a){

int r = a;

}

• that is called by the main program
int x = 5;

Widget y = new Widget();

thefunc(y, x);

• The Widget y is passed by reference. The int x is passed by
value.

Stack for Call Parameters

•push x
5 (value of x)

Stack for Call Parameters

• push x

• push address of y address of Widget y

5 (value of x)

Stack for Call

• push x

• push address of y

• call thefunc return address

address of Widget y

5 (value of x)

Stack with Activation Records

• push x

• push address of y

• call thefunc

• Link to previous activation
record

return address

address of Widget y

5 (value of x)

addr of prev act rec

Stack Use by Function

• push x

• push address of y

• call thefunc

• Link to previous activation
record

• increment stack

addr of prev act rec

return address

address of Widget y

5 (value of x)

local variable r

Stack for Return

• push x

• push address of y

• call thefunc

• Link to previous activation record

• increment stack

• decrement stack

addr of prev act rec

return address

address of Widget y

5 (value of x)

local variable r

Stack for Return

• push x

• push address of y

• call thefunc

• Link to previous activation record

• increment stack

• decrement stack

• return

addr of prev act rec

return address

address of Widget y

5 (value of x)

local variable r

Cleanup Stack

• push x

• push address of y

• call thefunc

• increment stack

• decrement stack

• return

• decrement stack by 2

addr of prev act rec

return address

address of Widget y

5 (value of x)

local variable r

Explain the Implementation

Working in teams of students, explain how the
following parameter passing paradigms can be
implemented (value or address on the stack)

• reference

• value (in)

• value result (in out)

• result (out)

What will this C++ program do?

void examplefunc() {

int stuff = 0;

char info[4];
int i;

for (i = 0; i < 7; i++){
info[i] = stuff++;

}

}
A. Compiler Error

B. Run time buffer overflow error

C. Corrupt data

D. Data execute exception

Basic Buffer Overflow
boolean rootPriv = false;

char name[8];

cin >> name;

• When the program reads the name “Smith”

S m i t h false

char name[8] rootPriv

Basic Buffer Overflow
boolean rootPriv = false;

char name[8];

cin >> name;

• When the program reads the name
“Armstrong”

A r m s t r o n g

char name[8] rootPriv

Stack Overflow

•A stack overflow exploit occurs when a user enters
data that exceeds the memory reserved for the input

• The input can change adjacent data or the return
address on the stack

W X Y Z 0 0 0 0 Return address

char myStuff[4];

Program Stack

Exceeding Array Bounds

• In many languages, including C and C++, the system
will not detect that a method has indexed beyond the
end of an array

• If a program stores data in an array using an index
bigger than the size of the array, the data will be
stored in whatever memory follows the array

Stack Overflow Attack

• A common security attack is to
cause a program to overflow the
stack

• If the program stores a value into
array[4], it will right in the data past
array, the return address

• Instructions might be loaded in the
rest of the stack

5 (value of x)

address of Widget y

return address

local variable array[4]

Stack Canaries

•A stack canary is a random number
placed on the stack between the
user data and the return address.

•Overflowing the local variable and
changing the return address will also
change the stack canary

•Before returning, the program
checks the canary value

5 (value of bass)

address of carp

return address

Addr of last frame

Stack canary

cow[4]

Data Execution Prevention

•Most newer processors have a bit in the page table
that inhibits instruction fetches from that page

•Operating systems can set data execution prevention
for stacks

• This prevents the program from executing machine
language loaded on the stack by an exploit

• This does not prevent programs from overwriting the
return address

Random Stack Location

•Microsoft Windows locates a programs stack at a
random address since Windows Vista

• Each time the program is executed, the stack is at a
different address

•Hackers cannot learn stack addresses from a previous
execution of the program

Stack Protection

•Good programs should check all indexes to ensure
they are within range

•Avoid functions that do not check limits, such as cin

• Java always checks array indexes

Example Program

Stack Activation Frame Format
locals The local variables of the method. This can vary

in size.

Frame pointer The address of the previous activation frame.

Return address The address of the instruction after the method
call in the calling program.

parameter 1 The first parameter to the method

parameter 2 The second parameter to the method

Analyzing Memory

The EBP register, points to the frame
pointer in the current activation frame,
contains 00012360

methodB 00801000
methodA 00801400

main 00801800

addr 0 1 2 3 4 5 6 7 8 9 A B C D E F

00012350 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC

00012360 90 23 01 00 60 14 80 00 08 00 00 00 CC CC CC CC

00012370 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC

00012380 CC CC CC CC CC CC CC CC 08 00 00 00 CC CC CC CC

00012390 C0 23 01 00 70 18 80 00 03 00 00 00 05 00 00 00

000123A0 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC

Analyzing Memory

methodB 00801000
methodA 00801400

main 00801800

addr 0 1 2 3 4 5 6 7 8 9 A B C D E F

00012350 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC

00012360 90 23 01 00 60 14 80 00 08 00 00 00 CC CC CC CC

00012370 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC

00012380 CC CC CC CC CC CC CC CC 08 00 00 00 CC CC CC CC

00012390 C0 23 01 00 70 18 80 00 03 00 00 00 05 00 00 00

000123A0 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC

Frame pointer

Return address

parameter 2

parameter 1

Method Calls without a Stack

• Some systems do not have stack hardware

•Method calls are generally done with an instruction
that loads the return address into a register and jumps
to the method

IBM 360 Function Calls

• IBM 360 and its descendants used a Branch And Link
instruction

LA R1, parameter list

BAL R14, myFunc

• The registers were saved in a linked save area upon
entry to the function

Univac 1100 Function Calls
• The Univac 1100 series had 36 bit registers and 18

address space

• Functions were called with a Load Modifier and Jump
instruction that saved the return address in the upper
half of a register

LMJ X11, myFunc

address of parameter 1

address of parameter 2

next line of the program

